2-(2-FURYL)IMIDAZO[1,2-*a*]PYRIMIDINE SYNTHESIS AND ELECTROPHILIC SUBSTITUTION REACTIONS

N. Saldabol, J. Popelis, O. Lando, and V. Slavinska

The synthesis of 2-(2-furyl)imidazo[1,2-a]pyrimidine has been carried out. Azocoupling, nitrosation, and bromination by 1 mole of bromine occur at position 3 of the bicycle. Reaction with 2 mol of bromine gives the 3,5'-disubstituted derivative. Bromination using 1 mol of bromine in 40% hydrobromic acid and sulfonation occur initially at the 5' position of the furyl group.

Keywords: 2-(2-furyl)imidazo[1,2-*a*]pyrimidine, azocoupling, bromination, nitrosation, sulfonation.

We have continued our study of the effect of the nature of heterocycles with a bridging nitrogen atom on the reactivity of hetarylfurans. The reaction of an ether solution of freshly prepared 2-bromoacetylfuran (1) (an unstable lachrymator) with 2-aminopyrimidine (2) gave 2-amino-1-(2-furoylmethyl)pyrimidinium bromide (3) which was converted to 2-(2-furyl)imidazo[1,2-*a*]pyrimidine (4) by subsequent heating with NaHCO₃ in water.

A study of the electrophilic substitution of compound 4 has shown that the reactions with p-nitrophenyldiazonium chloride and n-butylnitrite occur only at position 3 of the bicycle and give the corresponding 3-(p-nitrophenylazo)- (5) and 3-nitroso- (6) substituted compounds. The structure of the latter was proved by ¹H NMR spectroscopy.

Analogously to previously reported formylation reaction of compound 4, which with 1 mol of reagent occurs selectively at position 3 whereas an excess of reagent reacts at positions 3 and 5' [1], the action of 1 mol of bromine on this compound in acetic acid gives the 3-bromo-substituted (7) and 2 mol of bromine the 3,5'-disubstituted 8.

Latvian Institute of Organic Synthesis, Riga LV-1006; e-mail: dzsile@osi.lv. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 565-570, April, 2006. Original article submitted May 25, 2004.

Hence an electrophilic substitution reaction of **4** in neutral or weakly acidic media occurs in the same way as in the case of its 8-desaza analog 2-(2-furyl)imidazo[1,2-*a*]pyrimidine [2, 3].

However, the action of 1 mole of bromine in acetic acid on the salt 4·HBr gives a mixture of 3-bromo-, 3,5-'dibromo- and 5'-bromo-substituted **7-9** by contrast with 6-(2-furyl)imidazo[2,1-*b*]thiazole hydrobromide which is completely converted to the 5'-bromofuryl derivative under the same conditions [4].

From compound **4** it proved possible to obtain only the 5'-bromo derivative **9** by the action of 1 mol of bromine in 40% hydrobromic acid medium. The ¹H NMR spectrum of the reaction mixture after 1 h showed signals for the bromo-substituted **8** and **9** but after 24 h only compound **9** and the starting material in the ratio 1:1. This is likely to be the result of partial as well as complete debromination of compound **8**. The occurrence of debromination was previously reported when heating in DMF medium the furylimidazopyridine and furylimidazothiazole hydrobromides which were bromo-substituted in the imidazole ring [5].

The mixture of the bromo-substituted **7-9** with the starting material was separated on a silica gel column. A counter synthesis of the 5'-bromo-substituted **9** was carried out by the reaction of the 2-aminopyrimidine (**2**) with the bromo ketone **10** and also with the precursor in the preparation of this bromo ketone, the diazo ketone **11**.

The difference in reactivity of compound 4 and furylimidazopyridine was particularly clear in strongly acidic medium. It has previously been shown [6] that the nitration of compound 4 with 1 mol of HNO₃ in conc. H_2SO_4 occurs selectively to give the 5'-nitro derivative in 79% yield while the furylimidazopyridine these conditions forms, in low yield, a mixture of the 5'-nitro- and 3,5'-dinitro-substituted compound with a predominance of the latter [7]. Subsequent introduction of a nitro group in position 3 of compound 4 proves strongly hindering [6]. If the furylimidazopyridine forms the 3,5'-disulfoacid in 68% yield with conc. H_2SO_4 [7] then compound 4 is sulfonated only in the furyl group and the reaction occurs with greater difficulty. The ¹H NMR spectrum of the reaction mixture showed the presence of only 40% of the 5'-sulfoacid 12 which could not be separated.

Com-	Empirical formula	_	Found, 9	Vo	mn °C*	Yield,%
pound		C H N			mp, C	(method)
3	$\mathrm{C_{10}H_{10}BrN_{3}O_{2}}$	$\frac{42.41}{42.27}$	$\frac{3.64}{3.80}$	$\frac{14.48}{14.79}$	220-222	89
4	$C_{10}H_7N_3O$	$\frac{64.65}{64.86}$	$\frac{3.78}{3.81}$	$\frac{22.73}{22.69}$	212-214	58
4 ·HBr·H₂O	$C_{10}H_{10}BrN_3O_2$	$\frac{42.09}{42.28}$	$\frac{3.61}{3.54}$	$\frac{14.53}{14.79}$	258-260	72
4.picrate	$C_{16}H_{10}N_6O_8$	$\frac{46.09}{46.39}$	$\frac{2.51}{2.43}$	$\frac{20.09}{20.28}$	238-239	—
5	$C_{16}H_{10}N_6O_3$	<u>57.11</u> 57.22	$\frac{2.84}{3.02}$	<u>24.89</u> 25.14	>300	99
6	$C_{10}H_6N_4O_2$	$\frac{55.83}{56.07}$	$\frac{2.76}{2.87}$	$\frac{25.98}{26.10}$	223-225	81
7	C ₁₀ H ₆ BrN ₃ O	$\frac{45.23}{45.48}$	$\frac{2.21}{2.29}$	<u>16.14</u> 15.91	184-186	81
7∙HBr	$C_{10}H_7Br_2N_3O$	$\frac{35.05}{34.81}$	$\frac{1.94}{2.02}$	$\frac{11.97}{12.18}$	268-270	84
8	$C_{10}H_5Br_2N_3O$	$\frac{34.78}{35.00}$	<u>1.57</u> 1.46	$\frac{12.27}{12.25}$	281-283	80
9	C ₁₀ H ₆ BrN ₃ O	<u>45.34</u> 45.48	$\frac{2.43}{2.29}$	<u>15.93</u> 15.91	252-254	29 (A), 50 (B) 73 (C),
						35 (D)
9·HBr	$C_{10}H_7Br_2N_3O$	$\frac{34.67}{34.81}$	$\frac{2.13}{2.02}$	<u>12.26</u> 12.18	269-271	83

TABLE 1. Characteristics of Compounds 3-9

* Compound **3** was purified by crystallization from a mixture of EtOH–ether; **5** from DMF–EtOH; **6** from benzene; **4b**, **4**·HBr, **4**·picrate, **7**, **7**·HBr from aqueous EtOH; **8**, **9** from aqueous DMF.

This observation additionally confirms the lowering of the susceptibility of the imidazole ring to electrophilic substitution in acidic media with the increased π -deficiency of the heterocycle annelated *via* the bridging nitrogen atom.

EXPERIMENTAL

¹H NMR spectra were recorded on a Bruker WH-90/DS (90 MHz) instrument using DMSO-d₆, CF₃COOH, 40% hydrobromic acid (internal standard HMDS, δ 0.055 ppm), or conc. H₂SO₄ (internal standard cyclohexane, δ 1.44 ppm). IR spectra were taken on a Perkin Elmer 580B instrument using vaseline oil (region 2000-600 cm⁻¹) and hexachlorobutadiene (regions 3600-2000 and 1500-1300 cm⁻¹). TLC was performed using Silufol UV-254 plates in the systems benzene–dioxane–acetic acid (20:4:1) , benzene–ethyl acetate (1:3), or acetone–chloroform (1:5) and were revealed using UV light. Mixture separation was carried out on a Woelm silica gel column (2.5 × 40 cm) with chloroform eluent (compounds **4**, **7-9**). Melting points were measured on a Boetius instrument. For the determination of the C and H content a combustion catalyst was used or the carbon data obtained was too low.

2-Amino-1-(2-furoylmethyl)pyrimidinium Bromide (3). 2-Aminopyrimidine **2** (38 g, 400 mmol) was added to a solution of the bromo ketone **1** (75.6 g, 400 mmol) in ether (300 ml). The mixture was held for 5 days at room temperature and the precipitate was filtered off and washed with ether. Yield 101 g. IR spectrum, v, cm⁻¹: 3400 and 3320 (NH₂), 2600-2500 (NH_{assoc}), 1668 (C=O), 1620 (C=N, δ NH), 1515 (COCH₂).

Com-	C - la sent	Chemical shifts, δ, ppm*								
pound	Solvent	H-3	H-5	H-6	H-7	H-3'	H-4'	H-5'		
4	DMSO-d ₆	8.11	8.91	7.02	8.50	6.88	6.68	7.75		
	CF ₃ COOH	8.23	9.17	7.79	9.10	7.26	6.72	7.71		
4·HBr	DMSO-d ₆	8.44	9.21	7.43	8.83	7.15	6.74	7.94		
	40% HBr	8.52	9.20	7.65	8.96	7.30	6.73	7.92		
$4 \cdot H_2 SO_4$	H ₂ SO ₄ conc.	8.55	9.67	8.38	9.33	7.52	6.87	7.92		
6	DMSO-d ₆	—	9.91	7.56	9.04	7.75	6.86	8.22		
7	DMSO-d ₆	—	8.95	7.57	9.00	7.79	6.90	7.85		
	CF ₃ COOH	—	9.27	7.70	9.02	7.62	6.72	7.73		
8	DMSO-d ₆	—	8.95	7.30	8.70	7.87	7.38	—		
	CF ₃ COOH	—	9.13	7.86	9.08	7.48	6.72	—		
9	DMSO-d ₆	8.15	8.90	7.02	8.52	6.91	6.69	—		
	CF ₃ COOH	8.25	9.17	7.75	9.11	7.48	6.72	—		
9·HBr* ²	40% HBr	8.56	9.25	7.65	8.96	7.30	6.73	—		
12* ²	H_2SO_4 conc.	8.76	9.80	8.35	~9.5	6.87	~7.6	—		

TABLE 2. ¹H NMR Spectra of 2-(2-Furyl)imidazo[1,2-*a*]pyrimidine and Derivatives

* Imidazopyrimidine signals: H-3 – s; H-5 – dd; H-6 – dd; H-7 – dd; $J_{5,6} = 6.4-6.7$; $J_{5,7} = 1.6-2.0$; $J_{6,7} = 4.1-4.4$ Hz in DMSO-d₆ and CF₃COOH; $J_{5,6} = 7.0$ Hz in conc. H₂SO₄; 2-substituted furan: H-3' – dd; H-4' – q; H-5' – dd; $J_{3,4} = 3.6-4.0$; $J_{3,5} = 0.8-0.9$; $J_{4,5} = 1.8$ Hz; 2,5-disubstituted furan: 2d, $J_{3,4} = 3.6-4.0$ Hz.

 $*^2$ In a mixture with starting compound **4**.

2-(2-Furyl)imidazo[1,2-*a***]pyrimidine (4)**. The salt **3** (10 g, 35 mmol) in water (200 ml) with NaHCO₃ (10 g) was refluxed for 3 h. The precipitate formed on cooling was filtered off and washed with water. Yield 3.78 g. It was purified by crystallization from aqueous ethanol or acetone, octane, or by vacuum sublimation.

2-(2-Furyl)-3-(*p***-nitrophenylazo)imidazo[1,2-***a***]pyrimidine (5). A solution of the diazonium salt prepared from** *p***-nitroaniline (1.52 g, 11 mmol), conc. HCl (3 ml), ice (50 g), and NaNO₂ (1 g, 15 mmol) was added at 0-5°C with stirring to a solution of compound 4 (1.85 g, 10 mmol) in pyridine (20 ml). The red-brown precipitate was filtered off and washed with water and ethanol. Yield 3.33 g.**

2-(2-Furyl)-3-nitrosoimidazo[1,2-*a***]pyrimidine (6)**. Freshly distilled butylnitrite (1.55 g, 15 mmol) was added with stirring to a solution of compound **4** (1.85 g, 10 mmol) in benzene (60 ml) cooled in ice. After 2 h the reaction mixture was diluted with petroleum ether (130 ml) and the green precipitate was filtered off and washed with petroleum ether. Yield 1.73 g.

3-Bromo-2-(2-furyl)imidazo[1,2-*a***]pyrimidine (7).** A solution of bromine (0.51 ml, 10 mmol) in glacial acetic acid (8 ml) was added to a solution of compound **4** (1.85 g, 10 mmol) in the same solvent (50 ml) and stirred for 1 h. Ether (100 ml) was added and the precipitated 7·HBr salt was washed with ether. Yield 2.90 g. Treatment of the salt (2.5 g) with a 20% aqueous NaOH solution gave compound 7 (1.55 g).

3-Bromo-2-(5-bromo-2-furyl)imidazo[1,2-*a***]pyrimidine (8)** was prepared similarly from compound **4** (1.85 g, 10 mmol) and bromine (1.12 ml, 22 mmol). Yield of the base 2.74 g.

2-(5-Bromo-2-furyl)imidazo[1,2-*a*]pyrimidine (9), 3-Bromo-2-(2-furyl)imidazo[1,2-*a*]pyrimidine (7), and 3-Bromo-2-(5-bromo-2-furyl)imidazo[1,2-*a*]pyrimidine (8). A. A solution of bromine (0.51 ml, 10 mmol) in AcOH (15 ml) was added over 30 min to a stirred suspension of compound $4 \cdot \text{HBr} \cdot \text{H}_2\text{O}$ (2.84 g, 10 mmol) in AcOH (10 ml) and the temperature was held at 10-15°C. The product was stirred for 2 h, ether

(150 ml) was added, and the precipitate formed was filtered off, washed with ether, triturated with 10% aqueous NaOH solution, and then washed with water to give a mixture of compounds **4**, **7-9** (2.04 g) in the ratio 2:2:1:4 (¹H NMR spectrum in CF₃COOH). The mixture was separated on a column to give a first fraction of compound **8** (0.065 g), second of **7** (0.12 g), and third of **9** (0.29 g).

2-(5-Bromo-2-furyl)imidazo[1,2-*a***]pyrimidine (9)**. B. A solution of bromine (0.13 ml, 2.5 mmol) in 40% hydrobromic acid (2 ml) was added portionwise with stirring to a solution of compound 4 (0.462 g, 2.5 mmol) in the same solvent (5 ml) and held for 24 h at room temperature. According to the ¹H NMR spectrum the mixture obtained was of 9 and 4 in the ratio 1:1.

C. A solution of 5-bromo-2-bromoacetylfuran 10 (2.68 g, 10 mmol) and the amine 2 (0.95 g, 10 mmol) in ethanol (30 ml) was refluxed for 7 h, diluted with ether (60 ml), and the precipitated hydrobromide 9 was filtered off. Yield 2.86 g.

This salt (2.0 g) was triturated with aqueous ammonia and the precipitate was filtered off and washed with water to give the base 9 (1.35 g).

D. The diazo ketone 11 (2.15 g, 10 mmol) and amine 2 (0.95 g, 10 mmol) in absolute ethanol (30 ml) were refluxed for 1 h and solvent was evaporated off. The residue was recrystallized from aqueous ethanol to give compound 9 (0.92 g).

REFERENCES

- 1. N. O. Saldabol, Yu. Yu. Popelis, and V. A. Slavinskaya, *Khim. Geterotsikl. Soedin.*, 1112 (2001).
- 2. N. O. Saldabol, Yu. Yu. Popelis, L. N. Alekseeva, L. K. Yalynskaya, and N. D. Moskaleva, *Khim.-Farm. Zh.*, No. 6, 64 (1977).
- 3. N. O. Saldabol and Yu. Yu. Popelis, *Khim. Geterotsikl. Soedin.*, 691 (1972).
- 4. N. O. Saldabol, L. L. Zeligman, Yu. Yu. Popelis, and S. A. Hiller, *Khim. Geterotsikl. Soedin.*, 55 (1975).
- 5. N. O. Saldabol and O. E. Lando, Zh. Org. Khim., 13, 2626 (1977).
- 6. N. O. Saldabol, Yu. Yu. Popelis, and E. E. Liepin'sh, *Khim. Geterotsikl. Soedin.*, 1566 (1978).
- N. O. Saldabol, E. E. Liepin'sh, Yu. Yu. Popelis, R. A. Gavar, L. Kh. Baumane, and I. S. Birgele, *Zh. Org. Khim.*, 15, 2534 (1979).